
Shape Optimization of Cochlear Implant Electrode Array using Genetic Algorithms

Charles T.M. Choi, Ph.D., senior member, IEEE
Department of Electrical Engineering, I-Shou University, Kaohsiung, 840, TAIWAN

and
California Ear Institute, Stanford University, Palo Alto, California, U.S.A

e-mail: c.t.choi@ieee.org

Abstract−Finite element analysis is used to compute the

current distribution of the human cochlea during cochlear

implant electrical stimulation. Genetic algorithms are then

applied in conjunction with the finite element analysis to

optimize the shape of cochlear implant electrode array

based on the energy deposited in the spiral ganglion cells

region.   The goal is to improve the focus of electrical

energy delivered to the spiral ganglion cells in the human

cochlea, thus, reducing energy wasted and improve the

efficiency and effectiveness of the cochlear  implant

system.

Index Terms−F i n i t e  e l e m e n t  m e t h o d ,  genetic

algorithm, cochlear implant, electrode array.

I. INTRODUCTION

Recently, genetic algorithms (GA) [1] have been
applied successfully to many disciplines. GA has some
advantage over the traditional gradient method: they are a
class of global optimization algorithm and they do not
require computation of the derivatives or gradient of the
function.  GA has been applied to optimize electromagnetic
devices [2] optimization problems.  In this paper,  GA is
coupled with finite element analysis to optimize the shape of
the cochlear implant electrode array to improve the
efficiency of the cochlear implant system.

Cochlear implant (CI) [3] is a system designed to
functionally replace the human cochlea for the severe to
profound hearing impaired patients. Sound energy is
converted to electrical signal and processed through a
speech processor (Figure 1). The electrical signal is then
delivered via a headpiece or antenna to the electrode array
implanted in the inner ear. Specifically, the energy is then
channeled to the different spiral ganglion cells and to the
brain via the hearing nerve.  Clinically, CI is found to be
quite effective in restoring hearing to hearing impaired
patients.  One critical aspect of the CI system is the electrode
array which is used to delivered the electrical energy to the

spiral ganglion cells, the hearing nerves.  In this project,
genetic algorithm is coupled with finite element analysis to
optimize the shape of the CI electrical array to improve the
energy focus of the CI system.

While boundary element method was used to study
the electrical potential distribution pattern in cochlea [4], it
was studied using an axisymmetric model (2.5D). And
currently there is no study available in the literatures for CI
electrode shape.

II COCHLEAR  IMPLANT ELECTRODE  ARRAY

A typical cochlear implant system consists of a
microphone, a speech processor, an electrical signal
transmitter/receiver and electrode array as shown in Figure
1. This paper focuses primarily on the electrode array
design.

Typically, the electrical stimulation are done in common
ground mode, monopolar mode and bipolar mode. Since
bipolar mode allows better focus of the electrical energy, we
will study the CI electrode array in bipolar mode only.

A typical CI electrode array in bipolar mode is shown in
Figure 2. Notice the spiral ganglion cells is located near the
electrode pair. The electric conduction analysis is performed
using finite element analysis.  The electrical energy
deposited in the spiral ganglion cells is defined as the
objective function in the genetic algorithm.

The CI electrodes are shaped by its boundary nodes. The
coordinates of the boundary nodes are represented by binary
codes. GA can then be used to search the binary codes which
represent the coordinates of the boundary nodes (and shape
of the electrodes) for optimum values in terms of the
objective function.

The electrode shape will be given certain constrained to
reduce the search space.  Figure 3 shows the flowchart of
how the electromagnetic analysis is coupled with the genetic
algorithm.  Figures 4 - 6 show the current distribution of the
various electrode and dielectric partition configurations.
These can be used as initial conditions for the genetic
algorithm.
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Figure 1 A typical cochlear implant system which consists of a
microphone, a speech processor, transmitter/receiver, and electrode
implanted inside the human inner ear.

                     Scala Tympani

Figure 2  A simplified model of cochlear implant electrode array in bipolar
mode. The spiral ganglion cells region is used to compute the electromagnetic
energy which is used as the objective function in the genetic algorithm.

Figure 4 Current density distribution is shown for the case of planar electrodes
and flat dielectric partition.

Figure 3  Flowchart showing how the finite element analysis and genetic
algorithm are coupled together.

Figure 5 Current density distribution is shown for the case of
elevated planar electrodes and flat dielectric partition.

Figure 6 Current density distribution is shown for the case of planar
electrodes and curved dielectric partition
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Table 1  Bitstrings and their objective functions and average E field are given
for a generation in the GA scheme.

Table 2 The new and old generations of shape configuration with their
objective and average E field.

Figure 7 The dielectric partition and electrodes of the CI are shown. The
electrodes can be shaped so that maximum energy is deposited into nerve
model area.

Figure 8  The electrode enclosed by the dashed line oval as shown in Figure 7. At
each finite element node on the electrodes, it is freely allowed to move vertically to
maximize the electromagnetic energy deposited in the nerve cell model.

Figure 9  Flowchart of genetic algorithm coupled with electromagnetic
analysis based on finite element method.

NO. Bit String F(t) Average
E Field

1 0101010000110010 5432 2.111
2 0101001000110000 5230 1.956
3 0100001100100101 4325 1.420
4 0100001100100001 4321 1.407
5 0101000100100011 5123 1.910
6 0011010001010101 3455 0.983
7 0101010100010010 5512 2.229
.
.

M 0111010001010000 . .

NO. Bit String F(t) Mean
eField

Status

1 0101010000110010 5432 Old
2 0100001100100101 4325 Old
3 0001001000110011 1233 New
4 0101000100100011 5123 Old
5 0011001000010010 3212 New
6 0001001001010011 1253 New
7 0010001101010001 2351 Old
.
.
M

New
New
Old

Figure 10  GA optimized electrode  pair and its current distribution.
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While it is possible to design the electrode shape by try
and error, it will be much more efficient to optimize the
electrode shape by genetic algorithm (GA) method. Here the
objective is the electromagnetic energy deposited in the
nerve cell area. The GA scheme will maximize the energy
deposited in the nerve cell (Figure 7). In order to shape
optimize the electrodes, we let the nodes on the top surfaces
of the two electrodes to be free to move vertically (Figure 8).
The i r  coord ina tes  a re  represen ted  in  the  form of
chromosomes or bitstrings (Table 1).

In each generation, 100 samples of different shape
configuration are generated and simulated (Figure 9). The
average E field in the nerve cell region is obtained for each
shape configuration.

This average E field is used to compute the objective
function. The objective function of each sample are ranked
(Table 1).      The top half are kept whereas the lower half
are

eliminated. The bitstrings of the top half are used to
generate the missing half of the samples for the next
generation by crossover [1] (See table 2). Table 2 shows the
ranked result of the old generation and the new generation.
When the solution converges, the algorithm stops and the
optimized solution is obtained (Figure 10)
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